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An analysis is presented for the entrance region heat transfer to a laminar, non-Newtonian 
falling liquid film with a fully developed velocity profile. Perturbation solutions are provided 
for the temperature field as well as heat transfer rates. The effect of heat generation by 
viscous dissipation is included. Numerical results for the heat transfer field are presented 
for a range of values of the power-law index and Brinkman number. 
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In t roduct ion 

There exist several industrial applications in which falling film 
heat exchangers are used widely. Non-Newtonian fluid falling 
film shell and tube exchangers are utilized in the food and 
polymer processing industries. In columns of small length, the 
falling film flow is laminar when the viscosity of the fluid is high. 

Nusselt 1 predicted heat transfer to a vertical laminar film. 
Brauer 2 provided a relationship between wall shear and film 
heat transfer coefficients. Experimental data for film heating 
and evaporation were obtained by Ishigai et al. 3 The transient 
thermal response as well as conjugate heat transfer character- 
istics of a falling liquid film along a vertical surface were 
predicted by Gorla et alff '5 All these studies were concerned 
with Newtonian falling liquid films. 

An integral approximate solution for the boundary layer 
equations in the case of a power-law type non-Newtonian 
laminar falling film was provided by Murthy and Sarma. 6 Heat 
transfer from an inclined plane to non-Newtonian fluid falling 
films was studied both theoretically and experimentally by 
Stucheli and Widmerfl 

The present work has been undertaken in order to study the 
heat transfer in the thermal entrance region for an Ostwald- 
de Waele model power-law type of a non-Newtonian laminar 
falling film. The velocity field will be assumed to be fully 
developed, whereas the temperature field is taken as developing. 
The effect of heat generation by viscous dissipation is included 
in the analysis. 

Analysis 

Consideration may be given to a vertical plane placed in a 
parallel stream of a hydrodynamically fully developed non- 
Newtonian, laminar, falling liquid film. The liquid flow is 
characterized by the power-law rheological model. Let x and 
y denote the streamwise and normal coordinates, respectively. 
The total shear stress distribution in the liquid film is 

\dy,]  =p(6 --y)g (1) 

where K is the consistency index and n is the power-law index. 
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The shear stress at the wall is 

_K/d.V 
~w- t~y) ,=o=P69 (2) 

The volumetric flow rate of liquid per unit width may be written 
a s  

O f 
B =  J o  u dy (3) 

Using the boundary condition of no slip at the wall and zero 
interfacial shear at the gas-liquid interface, we may write 

y = 0 :  u = 0  
du (4) 

y=6: - - = 0  
dy 

The velocity distribution is obtained by integrating Equation 1 
and using the boundary conditions given by Equation 4. It 
may be written 

u(,7) 
- 1 - -  ( 1  - r / )  I " +  1 ) / .  ( 5 )  

Uo 

where 

~# = yla 

Uo = (~(n+ Din 

Upon substituting Equation 5 into Equation 3, we obtain an 
expression for the film thickness: 

6={[(2n~)/n]Q}"/(2"+x)/(P~) 'i(z"+') (6, 

The governing energy equation may be written as 

~3T cgZT+ K (du']  "+'  
u = ~  (7 )  

with boundary conditions given by 

x = 0: T = T~ (inlet condition) 

y = 0 :  T=Tw (8) 

~gT 
y=6: - - = 0  (zero interracial heat flux) 

dy 
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Proceeding with the analysis, one may define 

~=x/L 
q=y/6 

o _ T - T w  
r~- Tw 

Pe - p CpQ 
BKy 

,5 
Gz = -  Pe 

L 

= G z (  2 n + l ' ]  
Gz* \ n + 1/I 

K(Q/B) "+ ~[(2n+ 1)/n] "+~ 
Br = (9) 

K f( T i - -  Tw)~ 2n 

Substituting expressions in Equation 9 into Equations 7 and 8, 
we obtain the transformed energy equation 

dO (~20 
Gz*[1 - (1 - r/) I" + 1)/.] ~ = ~qz + Br(1 - q)c.+ 1)/. (10) 

The transformed boundary conditions are 

4=0:  0=1 

q=0:  0 = 0  

q = l ,  c~O = 0 

(11) 

We may now define 

q~ = q[2 Gz*/9~] 1/3 

~O = (9~/2 Gz*) 1/3 
(12) 

Substituting Equation 12 into Equations 10 and 11, one may 
write 

O0 00"~ a2qj~l [ l_(l_q~O)(.+l)/ .]  - q ~ + q t f f ~ )  

1 820 
- -  t- Br(1 - q~qJ)(" + 1)/. (13) 0 50~ 2 

with boundary conditions 

=0:  0 = 0  

~b--, oo: 0--,1 
(14) 

S o l u t i o n s  a n d  r e s u l t s  

A series solution will be sought for 0(q~, ~O) in the form 

0(q~, q,) = 0o(4,)+ 001(q~)+ 020~(~)  + • • • (15) 

Substituting Equation 15 into Equations 13 and 14 and 
equating coefficients of like powers of qJ, we obtain 

0~ + 3(n + 1) ~b20 b = 0 (16) 
2n 

,, 3 [ n + l \  , 3 [ n + l \  1 a , 
0o--0 : )  

0" 3 { n + l \  ~b02) + ~ ~ _ n  ) n 4~2(0 _ ~b0] ) 2 - } k - - ~ ) 4 ~ ( 2 0 2 - '  3 / n + l ' ~ l  

+ _ l ( n + l ~ l  1)~bg0;+Br=0 2, 2. : . ( ! -  (18) 
0" 3 / n + 1 \  _ 4 , 0 3 ) + ~  _~_n ) n 0 2 ( 2 0 ~ _ 0 0 1 )  3_ ~ ~_~_)q~(303 , 3 / ' n+  f~ 1 

1)(01 2, 2. :n(!-  

8 ,  2n J n ( ! - l ) ( : - 2 ) 4 ) ' O ' ° - B r ( ~ - )  49=0 (19, 

,, 3 [ n + l \  3 / ' n+ l '~  1 
0 4 - 2 ~ - - £ - - )  q ~ ( 4 0 " - ~ b 0 ; ' ) + - / - ' 2 \  2n J n  ~b2(303-q~0~) 

_ l ( , + l ) _ l  

8 ,  :. (: ,)(: ,°:, 
1 n + l  1 1 1 1 6 , 

0o 

+Br  ( n +  1~ 1 q~2=0 (20) 
2 \ n / n  

etc. 

Notation 

B Width of plate 
Br Brinkman number 
Cp Specific heat 
g Gravitational acceleration 
Gz Graetz number 
Gz* Modified Graetz number 
h Heat transfer coefficient 
h Mean heat transfer coefficient 
K Viscosity coefficient for power-law fluids 
K: Thermal conductivity 
L Characteristic length 
n Power-law index 
Nu Nusselt number 
Pe Peclet number 
Q Volume flow rate 
T Temperature 

x Coordinate in the flow direction 
y Normal coordinate 

Dimensionless axial coordinate 
Thermal diffusivity 

r/ Dimensionless normal coordinate 
6 Film thickness 
0 Dimensionless temperature 
p Density 
~b Transformed dimensionless normal coordinate 
~k Transformed dimensionless axial coordinate 

Subscripts 
i Inlet conditions 
w Surface conditions 

Superscript 
- Average condition 
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The primes denote differentiation with respect to ~b only. The 1.0o 
governing boundary conditions are 

0 o ( 0 )  = 01C0) = 02 (0 )  . . . . .  0 
(21) 0.50 

0o(OO)= 1, 01(oo)=02(oo) . . . . .  0 

Equation 16 under boundary conditions 0o(0)=0 and 0o(OO) = 1 
can be solved in a closed form. The solution is 

Oo - ((n+ 1)/2n)1/30 So e-a2 dfl (22) 
F(4/3) 

Equations 17-20 were not solved in closed form but have 
been integrated numerically. The distribution of the thermal 
functions 0o, 01, 02, 03, and 04 is illustrated in Figures 1-3. 
Here, n and Br are treated as prescribable parameters. The 
dimensionless temperature may be subsequently obtained by 
means of Equation 15. 

The local heat flux at the wall is Figure 3 

q * = -  \ ~ / , = o  16 

_ K s ( T  i -  T . ) -  -----(2Gz*'~'/3(gO'~ (23) 

The local heat transfer coefficient may be defined based upon 
the inlet temperature difference as i~, 

h(x)= q* (24) 
T . - T i  
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Figure 4 Average Nusselt number versus the modified Graetz 
number (Br=O) 

16 
Br=l 

14 n = 0 . 2 ~  

1 0  

8 

6 

4 

2 I I I I I 1 I I I 
200 400 600 800 1000 

Gz* 

Figure 5 Average Nusselt number versus the modified Graetz 
number ( B r = l )  

The local Nusselt number  therefore becomes 

hx 
Nu x - 

K f  

L /'2Gz*'~ 1/3 I (25) 
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Table 1 Values of 0~ versus n and Br ( j =0 ,  1, 2, 3, and 4) 

n Br 0o(0) 0;(0) 0;(0) 0~(0) 0;(0) 

0 1.615095 -0 .485754 -0 .033408 0.017077 0.021368 
0.2 1 1.615095 -0 .485754 0.316650 -0 .385672 0.197560 

5 1.615095 -0 .485754 1.716942 -1 .996666 0.902385 

0 1.410913 -0 .292540 -0 .032753 -0 .001699 0.003904 
1/3 1 1.410913 -0 .292540 0.367731 -0 .364810 0.114292 

5 1.410913 -0 .292540 1.969725 -1.817137 0.556022 

0 1.119852 -0 .097990 -0.017911 -0 .005633 -0 .002235 
1 1 1.119852 -0 .097990 0.485748 -0 .320226 0.039250 

5 1.119852 -0 .097990 2.500623 -1 .578480 0.205010 

0 0.978231 -0 .032854 -0.007421 -0.002831 -0.001401 
3 1 0.978231 -0 .032854 0.568181 -0 .300199 0.013977 

5 0.978231 -0 .032854 2.870649 -1 .489669 0.075430 

0 0.944471 -0 .019693 -0 .004679 -0 .001878 -0 ,000983 
5 1 0.944471 -0 .019693 0.591189 -0 .296146 0.008553 

5 0.944471 -0 .019693 2.974540 -1.472801 0.046819 
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Figure 6 Average Nusselt number versus the modified Graetz 
number (Br=5)  

If h is the mean heat transfer coefficient for heat transfer based 
on the inlet temperature difference, one may write 

L h ( T , -  Ti)= - K y  Jo  \~Y/y=o dx (26) 

The average Nusselt number therefore becomes 

dO N~ =~T/](2Gz*'~ 1/3 J 0 r I ~- 1/3 E(~)~b = o]d' (27) 

In most practical applications, it is the surface characteristics, 
such as heat transfer rate, which are important. The values of 
0~(0), 0~(0), 0~(0), 0~(0), and 0~,(0) which are proportional to 
the Nusselt number have been tabulated in Table 1. With this 
information one may compute the local Nusselt number or 
average Nusselt number in a straightforward way from 
Equations 25 and 27, respectively. The variation of the average 
Nusselt number versus the modified Graetz number is shown 
in Figures 4-6. In these figures, the power-law index n and the 
Brinkman number have been treated as prescribable parameters. 
The results indicate that the effect of viscous dissipation is to 
increase the average heat transfer rate. For a given value of the 
Graetz number, the average dimensionless heat transfer rate is 
higher in pseudoplastic fluids (n< 1) than in dilatant (n> 1) 

fluids. For a given fluid, in general, the average heat transfer 
rate increases with the modified Graetz number. 

C o n c l u d i n g  r e m a r k s  

The heat transfer in the thermal entrance region of an Ostwald- 
de Waele type non-Newtonian laminar falling film has been 
investigated. Perturbation solutions are provided for the 
temperature distribution within the film as well as for the heat 
transfer to the film. The results indicate that the average Nusselt 
number increases with the modified Graetz number. For a given 
value of the modified Graetz number, the average heat transfer 
rate was found to be greater for pseudoplastic fluids than for 
dilatant fluids. The effect of heat generation is to augment the 
average heat transfer rate. 

Both 0 o and 01 are independent of the Brinkman number. 
Therefore for large values of the Graetz number, heat generation 
by viscous dissipation becomes less important. Unless Br is at 
least (Gz*) 2/3, the heat generation by viscous dissipation does 
not become important. 
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